Processing Time for Events in Language Scales Logarithmically with their Real-World Duration

1. Introduction

How do we represent the temporal duration of events as they unfold through language?

- Comprehending an event in language takes less time than experiencing it.
- Embodied accounts of cognition suggest we might take longer to process longer events if we "simulate" them in our minds.
- Some studies have looked at the relationship between temporal structure¹ or relative event duration^{2,3} and processing time.
- Others have looked at the effect of absolute duration on episodic shifts^{4,5,6}, but not the time taken to process the events themselves.

Coll-Florit and Gennari (2011) found that RT on **sensicality judgments** for punctual events was faster vs durative ones. They also found a correlation between Likert-scale estimates of event time and RT. However, a direct link between external and internal time (i.e. a *rate* of compression) has not been established.

Question: Does the processing time for events in language scale with their real-world duration?

2. Methods

Examples:

2 online experiments measuring RT for sensicality judgments. Stimuli were 3-word sentences in the form "the [noun] [verb]-ed", expressing bounded events.

Targets (sensible)Foils (nonsensible)

The mug shattered. The mountain eroded.

The coin shattered.

The mountain dissolved.

	Experiment 1	Experiment		
Task	Does the sentence make sense? (YES/ judgments as quickly as possible)			
Participants	Right-handed, English monolingual			
	80 (6 exclusions)	80 (3 exclusio		
Duration range	Punctual> 2 days	Punctual> Mi		
Stimuli	80 targets, 80 foils	90 targets, 90		

References

- ¹McRae, K., Brown, K. S., & Elman, J. L. (2021). Prediction-based learning and processing of event knowledge. Topics in Cognitive Science, 13(1), 206-223.
- ² Faber, M., & Gennari, S. P. (2015). Representing time in language and memory: The role of similarity structure. Acta Psychologica, 156, 156-16 ³ Coll-Florit, M., & Gennari, S. P. (2011). Time in language: Event duration in language comprehension. *Cognitive psychology*, 62(1), 41-79.
- ⁴Zwaan, R. A. (1996). Processing narrative time shifts. Journal of Experimental Psychology: Learning, memory, and cognition, 22(5), 1196
- ⁵Speer, N. K., & Zacks, J. M. (2005). Temporal changes as event boundaries: Processing and memory consequences of narrative time shifts. *Journal of memory and language*, 53(1), 125-140.
- ⁶ Anderson, A., Garrod, S. C., & Sanford, A. J. (1983). The accessibility of pronominal antecedents as a function of episode shifts in narrative text. *Quarterly Journal of Experimental Psychology*, 35(3), 427-440. ⁷ Davis, C. P., & Yee, E. (2023). Is time an embodied property of concepts? *PLOS ONE*, 18(9), e0290997

⁸ Ataee, P. (2022). pdrm83/sent2vec: How to encode sentences in a high-dimensional vector space, a.k.a., sentence embedding. (0.3.0) [Computer software]. https://github.com/pdrm83/sent2vec/tree/master

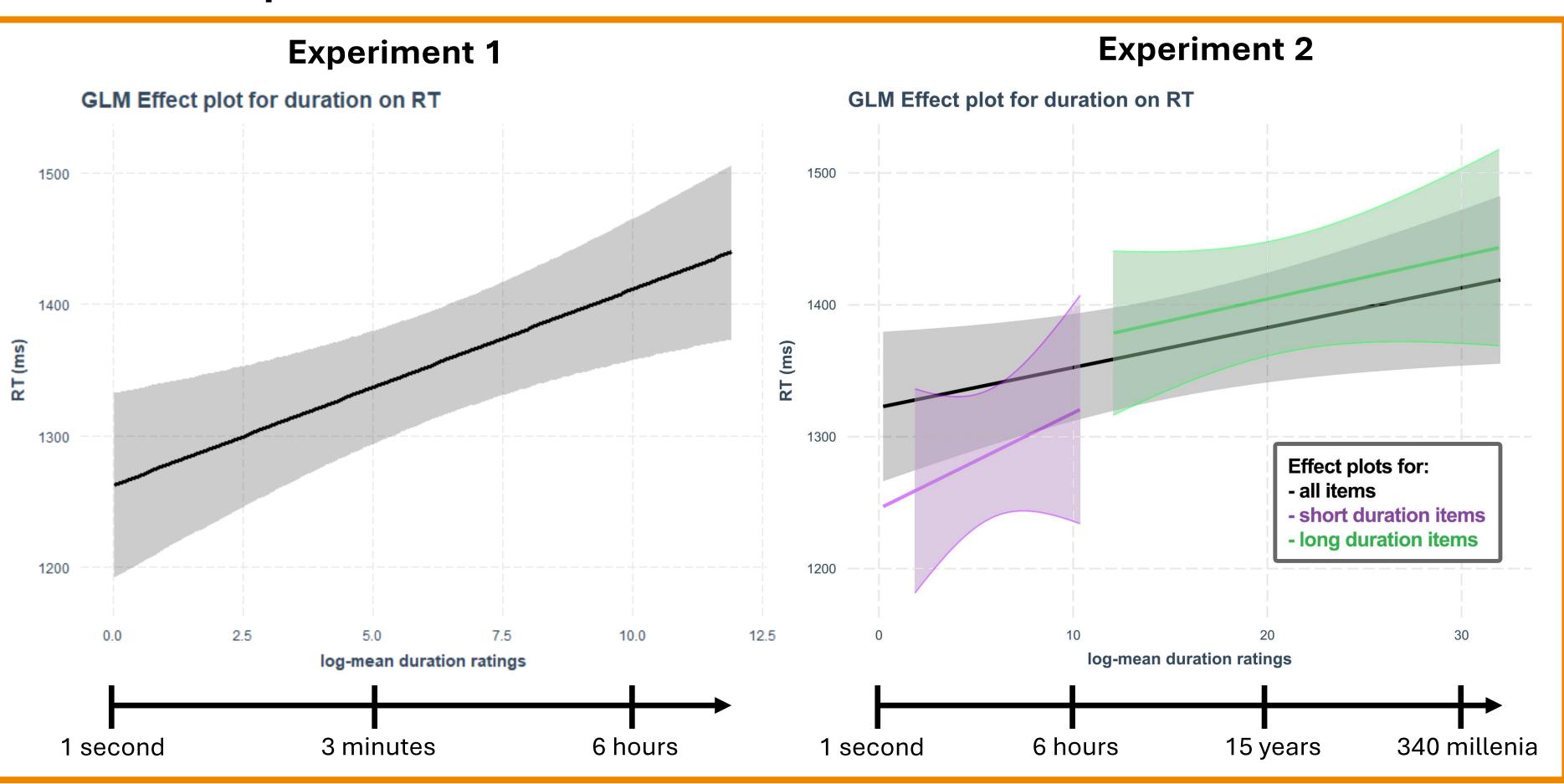
2 S/NO ons) llenia foils

Stimulus Norming

Subjects

30 online participants

Task


Give duration estimates for all targets, e.g. "1 hour" Mean duration estimates (in seconds) were calculated, then log_e-transformed

3. Results

We used a generalized linear mixed-effects model (Gamma link) to estimate the effect of **event** duration (log-transformed means) on reaction time. Covariates included semantic diversity, lexical properties like word length, and random effects for participants and items.

ReactionTime ~ EventDuration + (1+EventDuration|Participant) + (1|Item)

GLMM effect plots for event duration

Model output

Experiment 1							
Term	В	SE	t	р			
(Intercept)	2,945.27	328.7	8.96	< .001***			
log-mean event duration	14.92	4.65	3.21	.001**			
item agreement	-1,836.29	256.7	-7.2	< .001***			
semantic diversity	-70.69	40.49	-1.8	0.081			
length (noun)	15.43	7.65	2.02	.044*			
length (verb)	-4.71	7.9	-0.6	0.551			
age of acquisition (noun)	18.35	7	2.62	.009**			
age of acquisition (verb)	10.21	7.05	1.45	0.148			
surprisal (noun)	-7.63	7.68	-1	0.321			
surprisal (verb)	9.59	4.45	2.16	.031*			

Acknowledgements

This work was supported by the University of Connecticut and in part through a Jorgensen graduate fellowship awarded to the 1st author

Longer events take a longer time to process, controlling for complexity. Processing time increases at a log-linear rate with the event's actual duration.

Length_N + Length_V + Age_Of_Acquisition_N + Age_Of_Acquisition_V + Surprisal_N + Surprisal_V +

Experiment 2							
Term	В	SE	t	р			
(Intercept)	2,095.22	269.3	7.78	< .001***			
log-mean event duration	3.02	1.48	2.04	.041*			
item agreement	-1,265.48	224.3	-5.6	< .001***			
semantic diversity	19.32	28.67	0.67	0.501			
length (noun)	8.47	5.47	1.55	0.121			
length (verb)	5.95	8.17	0.73	0.467			
age of acquisition (noun)	14.12	5.8	2.43	.015*			
age of acquisition (verb)	13.22	5.6	2.36	.018*			
surprisal (noun)	-0.09	4.98	-0	0.986			
surprisal (verb)	3.85	4.05	0.95	0.343			

Ruling out a potential confound

- Reaction time was *faster* for items about which there was *more agreement* on the sensicality judgment task. RT as a function of item agreeme
- Slower RTs might therefore reflect *confidence* or *certainty* – as participants get less certain about a sensicality judgment, they might make slower responses.
- Since there is no "ground truth" for sensicality, item agreement (% of participants who responded "sensible" to a target sentence) was included in the model.

Semantic diversity

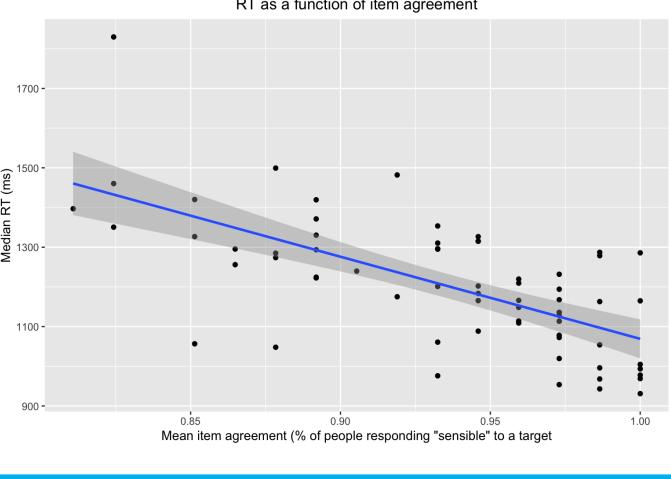
We've taken a similar approach to Coll-Florit and Gennari (2011) by operationalizing semantic diversity for a given item as the averaged sent2vec distance⁸ to all others in the experiment.

Is the relationship log-linear?

Model comparison using Akaike's Information Criterion showed that log-scaling event durations provides a better fit than other transformations (e.g. unscaled)

4. Discussion

- The processing time for events in language scales at a log-linear rate with their real-world duration.
- Events are necessarily compressed in our minds. The question is whether they are simulated at a compressed *rate*, or if duration is simply encoded as encyclopedic knowledge. These results suggest the former.


Connections to other studies

- Coll-Florit and Gennari (2011) found that RT on a sensicality judgment task correlated positively with Likert-scale duration estimates. They attributed their effect to the diversity of semantic associations, which we've taken into account in our model and still see an effect of duration.
- Davis and Yee (2022)⁷ found that the time taken to perceive individual concepts correlates with RT on a variety of tasks – these results extend that finding into the event domain.

Future Work

• We are designing experiments to fully isolate the contribution of an event's duration to its processing time (as activated by its label).