Theta-gamma phaseamplitude coupling as a neural signal of events in language

1. Introduction

There is evidence that multiple object-states are simultaneously represented and maintained in the brain when comprehending statechange events, e.g. "The girl will chop the bagel"^{1,2}. Yet we can differentiate **what** these states are and **when** they existed. Wesley Leong¹, Zachary Ekves, Yanina Prystauka², Gerry TM Altmann¹ ¹University of Connecticut, ²UiT The Arctic University of Norway (wesley-js-leong.github.io wesley.leong@uconn.edu) @wesleyjsleong

> Theta-gamma PAC may be a marker for events with minimal object statechange

Question: What are the neural dynamics that underlie these simultaneous representations?

Hypothesis: Brain maintains multiple representations using a thetagamma neural code

<u>What is theta-gamma coupling?</u> Theta-gamma coupling happens when the **amplitude** of a *gamma* (high-freq.) oscillation is modulated by the **phase** of a *theta* (low-freq.) oscillation.

What behavior is it linked to? Maintaining a sequence of items in working

Prediction: Substantial change condition has more distinct object states to maintain, hence might mean more theta-gamma coupling

Degree-of-change

Result: Significant theta-gamma PAC in the minimal change condition, but not in the substantial change condition

Minimal Substantial Z-score > 4 on each couple of frequency 0.000006 Z-score > 4 on each couple of frequency

memory has been shown to recruit frontotemporal theta-gamma coupling^{3,4,5,6}.

<u>What does the theta-gamma signal code for?</u> Individual gamma cycles nested within a theta-wave have been hypothesized to encode **individual items** in working memory⁷. In the context of object state-change events, they may represent **individual object-states**.

2. Methods

Task

N=69 across two EEG studies (secondary analysis of existing data) Word-by-word presentation on screen, occasional comprehension questions Manipulation of interest: degree-of-change ~30 trials per condition per subject

Deg. of change	First sentence	Second sentence
Minimal	The girl will choose the bagel.	And then she will
Substantial	The girl will chop the bagel.	smell the bagel.

4. What's next?

Theta-gamma PAC in the minimal but not substantial state-change condition may reflect the increased cost of keeping two *similar* object-states distinct in working memory.

Specs

256-channel EGI HydroCel Geodesic Sensor Net Original sampling rate 1000Hz, downsampled to 250Hz Bandpass filter: 1-80Hz

Analysis

7.2-second epoch from trial onset, encompassing both sentences Electrode at T7

PAC calculated using a Driven Auto-Regressive (DAR) model⁸

Before reaching a conclusion, we need to verify these secondary analysis results. We plan to run another follow-up study, but first, we seek more confidence in the methodology.

Among the questions to think about:

Multiple methods are available for PAC – which is the most suitable? PAC method for contrasting two conditions (vs comparing against the null)?

References

¹Hindy, N. C., Altmann, G. T. M., Kalenik, E., & Thompson-Schill, S. L. (2012). The Effect of Object State-Changes on Event Processing: Do Objects Compete with Themselves? Journal of Neuroscience, 32(17), 5795–5803.

²Solomon, S. H., Hindy, N. C., Altmann, G. T. M., & Thompson-Schill, S. L. (2015). Competition between Mutually Exclusive Object States in Event Comprehension. *Journal of Cognitive Neuroscience*, 27(12), 2324–2338. ³Bahramisharif, A., Jensen, O., Jacobs, J., & Lisman, J. (2018). Serial representation of items during working memory maintenance at letter-selective cortical sites. *PLOS Biology*, 16(8), e2003805.

⁴Heusser, A. C., Poeppel, D., Ezzyat, Y., & Davachi, L. (2016). Episodic sequence memory is supported by a theta–gamma phase code. *Nature Neuroscience*, 19(10), Article 10.

⁵Rajji, T. K., Zomorrodi, R., Barr, M. S., Blumberger, D. M., Mulsant, B. H., & Daskalakis, Z. J. (2017). Ordering Information in Working Memory and Modulation of Gamma by Theta Oscillations in Humans. *Cerebral Cortex*, 27(2), 1482–1490.

⁶Reinhart, R. M. G., & Nguyen, J. A. (2019). Working memory revived in older adults by synchronizing rhythmic brain circuits. *Nature Neuroscience*, *22*(5), 820–827.

⁷Lisman, J. (2005). The theta/gamma discrete phase code occuring during the hippocampal phase precession may be a more general brain coding scheme. *Hippocampus, 15*(7), 913–922. ⁸Dupré la Tour, T., Tallot, L., Grabot, L., Doyère, V., van Wassenhove, V., Grenier, Y., & Gramfort, A. (2017). Non-linear auto-regressive models for cross-frequency coupling in neural time series. *PLoS Computational Biology, 13*(12), e1005893.

Acknowledgements

This work was supported by the University of Connecticut and in part through a Jorgensen graduate fellowship and a Connecticut Institute for the Brain and Cognitive Sciences iBRAiN fellowship awarded to the 1st author.

0.000006

Poster template designed by Hannah Mechtenberg